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Abstract—Polar codes are a new class of error-correcting codes
that provably achieve the capacity of memoryless channels with
low complexity encoding and decoding algorithms. In this work,
we survey the literature and investigate the suitability of polar
codes to data storage applications focusing on error-correction
performance and throughput. We show that polar codes meet the
criteria for such applications and highlight the work required
before practical data storage systems can utilize these codes.

I. Introduction

Error correction schemes for storage systems must satisfy
three requirements: they must have good waterfall region
performance, very low error-floors, and moderate throughput
in the range of multiple gigabits per second (Gbit/s).

Polar codes, introduced in [1], are the first codes to provably
achieve the capacity of the underlying channel with an explicit
construction and a tractable-complexity decoding algorithm:
the successive cancellation (SC) decoding algorithm. For a
code of length N, SC decoding has complexity O(N log N).
This low complexity makes polar codes an attractive error
correction scheme.

In this paper we survey the literature and study the suitabil-
ity of polar codes for data storage applications. Since polar
codes have very low error floors due to their large stopping
distances [2], we focus on the waterfall region performance
and the decoding throughput.

While polar codes achieve the channel capacity, they do so
asymptotically and in practice, SC decoding of codes of short
or moderate lengths have worse error-correction performance
in the waterfall region than LDPC codes of comparable
lengths. The immediate solution to improving the performance
is to exploit the low complexity of the decoder and use longer
codes: in [3], a code of length N = 217 was implemented on a
field-programmable gate array (FPGA). However, this method
is inefficient as it was shown in [4] that the error-correction
performance scales slowly with code length. List decoding [5]
improves the performance of polar codes without changing
the code length. Additionally, it was found that concatenating
a polar code with an error detection code, such as a cyclic
redundancy check (CRC), improves the performance of both
SC [6] and list [7] decoding. Finally, switching to non-
binary polar codes improves the error-correction performance
significantly [8].

The SC decoding algorithm estimates bits sequentially;
therefore it has low throughput. In [9], it was shown that the
information throughput of an SC decoder is approximately
0.5R f , where R is the code rate and f the decoder clock
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Fig. 1: Construction of polar codes of lengths 2 and 4

frequency. Therefore, an SC decoder for a polar code of
length 215 bits and rate 0.9 running at 500 MHz will have an
information throughput of approximately 225 Mbit/s, which is
insufficient for data storage. Among the many throughput im-
proving methods proposed in literature, simplified successive
cancellation (SSC) [10] and simplified successive cancellation
with maximum likelihood nodes (ML-SSC) [11] offer the
largest improvement. For the aforementioned example, SSC
and ML-SSC can achieve information throughput of 2.8 Gbit/s
and 4.5 Gbit/s, respectively, while retaining the same number
of processing units.

We start this work by reviewing polar codes and the SC
decoding algorithm in Section II. In Section III, we review the
error-correction performance of polar codes and the different
methods by which it can be improved. We study throughput
improving methods in Section IV and present concluding
remarks and avenues for future work in Section V.

II. Review of Polar Codes

A. Construction of Polar Codes

Polar codes utilize the channel polarization phenomenon to
achieve the channel capacity as the code length increases.
Channel polarization occurs when one constructs from an
independent set of N identical channels a set of N channels
whose probability of error-free transmission approaches either
1 or 0.5 as N → ∞. The construction for N = 2 is illustrated
in Fig. 1a, where the ability of correct estimation decreases
for the bit u0, but increases for u1 compared to the case
where the bits are transmitted directly over the channel W .
The polarization increases as N increases and for N > 2, the
channels can be combined recursively as shown in Fig. 1b for
N = 4. As N → ∞, each bit’s probability of being successfully
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estimated, approaches 1, perfectly reliable, or 0.5, completely
unreliable, and the proportion of reliable bits approaches the
capacity of W . Since the reliability of each bit is known a
priori, the k most reliable bits are used to transmit information
and the remaining bits, called the frozen bits, are set to a
known value, usually 0, forming an (N, k) polar code.

Polar codes can be represented using generator matrices: for
N = 2 the generator matrix is F =

[
1 0
1 1

]
. Generator matrices

for longer codes are obtained using Kronecker powers, ⊗, of F
so that the generator matrix for a code of length N is F⊗ log2 N .
For example, for N = 4, the generator matrix is

F⊗2 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 .
It should be noted that in this work, we use the non-bit-

reversed generator matrices, unlike in [1] where the rows of the
generator matrix are rearranged by bit-reversing their indices.

B. The Successive-Cancellation Decoding Algorithm

It was proved in [1] that polar codes achieve the channel
capacity when decoded using the SC decoding algorithm,
which sequentially provides estimates ûi, 0 ≤ i < N, of the
information and frozen bits: given the channel information
vector y and the previously decoded bits û0 to ûi−1, denoted
ûi−1

0 , the SC decoder estimates ûi according to:

ûi =

0, if Pr[y,ûi−1
0 |ûi=0]

Pr[y,ûi−1
0 |ûi=1] > 1;

1, otherwise.
(1)

The probabilities Pr[y, ûi−1
0 |ûi = 0] and Pr[y, ûi−1

0 |ûi = 1]
can be calculated recursively. Using the values vN−1

0 shown
in Fig. 1b, the likelihood values for û0 can be calculated as
follows:

Pr[y|û0 = 0] =Pr[y|v̂0 = 0] ∗ Pr[y|v̂1 = 0]+
Pr[y|v̂0 = 1] ∗ Pr[y|v̂1 = 1] (2)

Pr[y|û0 = 1] =Pr[y|v̂0 = 0] ∗ Pr[y|v̂1 = 1]+
Pr[y|v̂0 = 1] ∗ Pr[y|v̂1 = 0]. (3)

The likelihoods of û1 depend on the value of û0 and are
calculated as the following when û0 = 0:

Pr[y, û0 = 0|û1 = 0] =Pr[y|v̂0 = 0] ∗ Pr[y|v̂1 = 0] (4)
Pr[y, û0 = 0|û1 = 1] =Pr[y|v̂0 = 1] ∗ Pr[y|v̂1 = 1]; (5)

and

Pr[y, û0 = 1|û1 = 0] =Pr[y|v̂0 = 1] ∗ Pr[y|v̂1 = 0] (6)
Pr[y, û0 = 1|û1 = 1] =Pr[y|v̂0 = 0] ∗ Pr[y|v̂1 = 1] (7)

when û0 = 1.
These equations are applied recursively until the inputs used

are the likelihood values calculated from the channel output.
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Fig. 2: FER of a (2048, 1024) polar coding system using
different decoding algorithms
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III. Error-Correction Performance

A. Successive-Cancellation Decoding

The frame error probability for polar codes and SC decoding
decreases exponentially in the square root of the code length,
i.e. it is o(2−

√
N) [12]. This slow rate of decrease results

in polar code having mediocre error-correction performance
for codes of moderate length and limits the improvement
gained by increasing the code length. Fig. 2 illustrates the
performance of moderate length codes by showing the frame-
error rate (FER) of SC decoding of a (2048, 1024) polar code.
Fig. 3, which focuses on the issue of FER scaling with code
length and demonstrates the performance of polar codes of
rate 0.9, shows that increasing the code length from 215 to 217

improves the frame-error rate by 0.5 dB and further increasing
the length to 218 only yields a 0.25 dB improvement.

Despite its error-correction performance at moderate code
lengths, SC decoding has an advantage in that its low-
complexity enables the implementation of longer codes, e.g.
in [3], a code of length 217 was successfully implemented on
an FPGA.
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B. List Decoding

The first method in literature to have significantly improved
the error-correction performance of polar codes without in-
creasing their length was list decoding [13]. List decoding
operates similarly to SC decoding; however, once an infor-
mation bit is encountered, instead of making a decision as
to what its value is, the decoder creates two paths: one in
which the bit is assumed to be 0, and another in which it
is 1. Left unconstrained, the decoder will generate 2k paths;
therefore, a maximum length, L, is imposed on the list. When
the list contains L paths and a new information bit, ûi, is
encountered, the decoder will generate 2L paths that are
then sorted according to their reliabilities—calculated from
Pr[y, ûi−1

0 |ûi = 0]—and the L least reliable paths are discarded,
maintaining the list size at L. At the end of the decoding
process, the most reliable path is chosen and presented as the
decoder output. When L = k, the decoder will be performing
maximum-likelihood (ML) decoding.

The improvement due to list decoding can be observed in
Fig. 3 for the (32768, 29491) code. When L = 2, the FER
improves by 0.25 dB and approaches that for SC decoding
and the 217 code; and when L = 8, the improvement is 0.5 dB
and the list decoder outperforms the SC decoder for the 218

until FER = 10−6.
For the (2048, 1024) code the FER for a list decoder with

L = 32 is shown in Fig. 2, where it can be observed that it
performs 0.75 dB better than the SC decoder when the FER =

10−2; however, this advantage shrinks to 0.2 dB at FER = 10−5

due to the small minimum weight of polar codes [7]. This lead
to the development of the List-CRC decoding algorithm.

C. List-CRC Decoding

One solution to the small minimum distance problem of
polar codes is to concatenate them with another code. A CRC
increases the minimum distance significantly and in [7] it was
proposed that a CRC be used to improve the performance of
list decoding.

In a list-CRC system, the information bits are first encoded
using a CRC encoder then a polar encoder. The decoder is
identical to a regular list decoder and only differs in the
final decoder output selection: instead of immediately using
the most reliable path, the decoder searches for a path that
satisfies the CRC constraint; if one is found, it is presented
as the decoder output; otherwise, the decoder outputs the
most reliable path. While the absence of a path satisfying the
CRC constraint indicates decoding failure; presenting the most
reliable path improves the bit-error rate.

The FER improvement due to using list-CRC for the (2048,
1024) code is significant: it is 1 dB when FER = 10−3 and
increases to 1.5 dB when FER = 10−5. For that case, L = 32
and a 16-bit CRC was used.

D. Chase Decoding

The standard chase decoding algorithm consists of three
parts: generating error patterns from different combinations
of the least reliable bits, decoding the channel output while

utilizing the error patterns, choosing the decoder output from
the list of candidates. Chase decoding of polar codes [11]
operates under the same principle. The least reliable bits in
a polar code are known a priori and the error patterns can
be generated offline. The information bits are encoded using
a CRC first then a polar code, as in the list-CRC decoding
algorithm, and the CRC is used as the criteria for the decoder
output selection.

Decoding starts using a regular SC decoding assuming the
all-zero error pattern, i.e. no errors occurred. If the CRC
constraint is satisfied, decoding ends and the decoder outputs
the current set of estimated bits ûN−1

0 . However, if the CRC
constraint is not satisfied, the most likely error pattern, as
calculated offline, is selected and decoding restarts. If the
currently decoded bit is in the error pattern, its value is flipped
and decoding continues assuming the new value. If the CRC
is still not satisfied, the next most likely pattern is selected
and decoding restart. This process is repeated until the CRC
constraint is satisfied or all the error-patterns have been tested,
in which case the decoder outputs the estimated bits assuming
the all-zero pattern.

Chase decoding of polar codes yields significant perfor-
mance improvement for the (2048, 1024) code, where the gain
relative to SC decoding was 0.75 dB when FER = 10−5 and
the maximum number of attempts was 1904. The gain for
the (32768, 29491) code was 0.5 dB when FER = 10−6 and
the resulting performance was similar to that of the 217 code.
Like list-CRC decoding, chase decoding improves the slope of
the error-rate curve and the performance gain relative to SC
decoding increases as the SNR increases.

This method is effective because the likelihoods of the
error-patterns decrease exponentially; therefore, the decoding
process is only restarted a few times on average. For example,
for the (32768, 29491) code shown in Fig. 3, the average
number of decoding attempts was 1.03 when SNR = 4.5,
indicating that the average throughput for the chase decoder
was only 3% slower than that of the SC decoder.

IV. Throughput

The sequential nature of SC decoding leads to low through-
put decoders: the information throughput of an SC decoder is
k/(2N − 2) bit/s/Hz [9]. Once resource constraints are taken
into account, the information throughput drops to

k
2N + N

P log2( N
4P )

bit/s/Hz,

where P is the number of processing elements implemented
in the semi-parallel (SP-SC) decoder [3]. It was shown in
[3] that a small number (64) of processing elements was
sufficient to achieve 90% of the throughput of unconstrained
SC decoders for codes of length < 220. Therefore, increasing P
does not improve the throughput significantly and one quickly
approaches the limit of k/(2N − 2).

While there have been multiple works in literature to
improve throughput, SSC and ML-SSC are the only methods
to improve it by an order of magnitude and approach the
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Fig. 4: Standard and tree representations of an SC polar
decoder for an (8, 3) code.

requirement for data storage. These two methods are reviewed
in the following sections.

A. Simplified Successive-Cancellation Decoding

The SC decoder graph can be viewed as a tree, where
each estimated bit ûi is a leaf node. There two types of leaf
nodes: N0 nodes corresponding to frozen bits, and N1 nodes
corresponding to information bits. The parent of two N0 nodes
is also an N0 node and corresponds to a constituent polar code
of rate zero. Combining two N1 nodes results in an N1 parent
corresponding to a constituent code of rate one. Finally, the
parent of two nodes of different types is an NR node and
corresponds to a constituent code of rate 0 < R < 1. Fig. 4a
and Fig. 4b demonstrate the transform for an (8, 3) polar code.
The frozen bits have grey labels in Fig. 4a and N0, N1, and
NR nodes in Fig. 4b are in white, black, and grey, respectively.

Traversing the tree of Fig. 4b and calculating the output
requires 14 clock cycles. However, the output of an N0 node
is always the all-zero vector. N1 nodes correspond to rate one
codes which do not improve the error rate according to the
data-processing inequality; therefore, their output is simply the
hard decision of the input soft-valued information. SSC [10]
improves throughput by stopping the tree traversal and using
the all-zero vector when an N0 node is encountered, and by
stopping the tree traversal and using the hard-decision rule
when an N1 node is encountered. This results in the pruned
tree shown in Fig. 5a, which requires 9 instead of 14 clock
cycles to decode.

The information throughput of SC and SSC decoders with
the same number of processing elements, P = 256, for codes
of rate R = 0.9 and lengths ranging from 211 to 219 is shown in
Fig. 6, where it can be observed that SSC decoding is 6 to 18
times faster than SC decoding, with a throughput increasing
from 3 to 8.5 bit/s/Hz as the code length increases.

B. Simplified Successive-Cancellation with ML Nodes

The main source of latency in SSC decoding are NR nodes:
they can require multiple clock cycles to calculate the data
passed to their children, and they are the root of a tree which
needs to be traversed. In [11], resource-constrained exhaustive-
search ML decoding was used to decode the constituent

(a) SSC (b) ML-SSC

Fig. 5: Decoder trees corresponding to the SC, SSC, and ML-
SSC decoding algorithms
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Fig. 6: Throughput of the ML-SSC, SSC, and SP-SC decoders
for codes of different lengths and rate 0.9.

codes corresponding to some NR nodes, reducing latency and
improving throughput. Exhaustive-search ML decoding was
chosen because it eliminates the need for the sub-tree traversal
and provides its output in one clock cycle. Therefore, an NML

node replaced a regularNR node when the following constraint
is satisfied:

(2kv + 1)(nv − 1) ≤ P, (8)

where kv and nv are the dimension and length of the constituent
code, respectively, and P is the number of processing elements
available. The ML-SSC decoder graph for the (8, 3) code is
shown in Fig. 5b and requires 7 clock cycles to decoder a
received channel vector.

Fig. 6 shows that the information throughput of ML-SSC
decoding with P = 256 for codes of rate 0.9 varies from 5 to
13 bit/s/Hz—10 to 26 times the throughput of SC decoding,
bringing the throughput of an ML-SSC decoder running at 500
MHz to 4.5 and 6 Gbit/s for the 215 and the 218 polar codes,
respectively. The information throughput for these two codes
can be increased to 5.3 and 7.6 Gbit/s by doubling the number
of available processing elements to 512.

V. Conclusion

In this work we surveyed the literature investigating the
suitability of polar codes for data storage applications. In terms
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of error-correction performance, polar codes do not exhibit
an error floor in the error-rate region of interest and their
performance in the waterfall region can be improved using
different methods, the two most effective being list-CRC and
Chase decoding. Using SSC and ML-SSC, the throughput
of polar decoder can be push into a suitable range. Future
work will focus on combining error-correction performance
and throughput improvement techniques. Finally, the memory
effects of the channel need be studied and a solution proposed.
Once these two remaining questions are resolved, we believe
that polar codes will prove to be suitable for data storage
systems.

References
[1] E. Arikan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] A. Eslami and H. Pishro-Nik, “On bit error rate performance of polar
codes in finite regime,” in Proc. 48th Annual Allerton Conf. Communi-
cation, Control, and Computing (Allerton), 2010, pp. 188–194.

[3] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” submitted to IEEE
Trans. Signal Processing, 2012.

[4] S. H. Hassani and R. Urbanke, “On the scaling of polar codes: I.
the behavior of polarized channels,” in Proc. (ISIT) Symp. IEEE Int
Information Theory, 2010, pp. 874–878.

[5] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. (ISIT)
Symp. IEEE Int Information Theory, 2011, pp. 1–5.

[6] G. Sarkis, C. Leroux, and W. J. Gross, “Chase decoding of polar codes,”
submitted to IEEE Commun. Lett., 2012.

[7] I. Tal and A. Vardy, “List decoding of polar codes,” ArXiv e-prints,
2012. [Online]. Available: http://arxiv.org/abs/1206.0050v1

[8] R. Mori and T. Tanaka, “Non-binary polar codes using reed-solomon
codes and algebraic geometry codes,” in Proc. IEEE Information Theory
Workshop (ITW), 2010, pp. 1–5.

[9] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” in Proc. IEEE
Int Acoustics, Speech and Signal Processing (ICASSP) Conf, 2011, pp.
1665–1668.

[10] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15,
no. 12, pp. 1378–1380, 2011.

[11] G. Sarkis and W. J. Gross, “Increasing the throughput of polar decoders,”
submitted to IEEE Commun. Lett., 2012.

[12] E. Arikan and E. Telatar, “On the rate of channel polarization,” in Proc.
IEEE Int. Symp. Information Theory ISIT 2009, 2009, pp. 1493–1495.

[13] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. (ISIT)
Symp. IEEE Int Information Theory, 2011.

http://arxiv.org/abs/1206.0050v1

